安卓系统作为目前全球最流行的移动操作系统之一,不断受到开发者和用户们的关注与追捧。随着人工智能和深度学习技术的飞速发展,将这两者集成到安卓系统开发中,开启了全新的可能性和广阔的前景。本文将深入探讨安卓系统开发中深度学习与人工智能集成技术的应用和解析。
我们来了解一下深度学习和人工智能的基本概念。深度学习是机器学习的一种,它模仿人类大脑的工作方式,通过多层次的神经网络进行学习和训练,以实现复杂的模式识别和决策功能。而人工智能则是一种模拟人类智能的技术,旨在使计算机系统能够像人类一样思考、学习、理解和应对不同问题。将这两种技术与安卓系统开发相结合,可以为用户带来更智能、更个性化的体验。
在安卓系统开发中,深度学习和人工智能技术的集成主要体现在以下几个方面:
一、智能语音助手:通过深度学习技术,安卓系统能够实现更准确、更智能的语音识别和语音交互功能。用户可以通过语音指令进行手机操作,如发送短信、拨打电话、播放音乐等,极大地提升了用户体验。
二、智能推荐系统:结合人工智能算法,安卓系统可以根据用户的兴趣、历史记录和行为习惯,为用户推荐个性化的应用、音乐、新闻等内容,帮助用户更快速地找到自己感兴趣的信息。
三、智能相机功能:利用深度学习技术,安卓系统的相机功能可以实现人脸识别、场景识别、美颜等功能。用户拍摄照片时,系统可以自动识别出人物和场景,并做出相应的优化整,提升照片质量。
四、智能安全防护:通过人工智能技术,安卓系统可以实现智能识别用户的生物特征,如指纹、面部等,从而加强手机的安全性,防止他人未经授权访问用户的手机信息。
深度学习和人工智能还可以在安卓应用开发中发挥更广泛的作用。比如,在游戏开发中,可以利用深度学习技术实现更为智能的游戏对手;在社交应用中,可以通过人工智能算法提供更精准的人脉推荐等。
深度学习与人工智能技术的集成为安卓系统开发带来了更多可能性和机遇。未来,随着这两大技术的不断发展和完善,安卓系统将会变得更加智能、高效,为用户提供更好的移动体验。
基于安卓系统的App开发技术分析与研究(基于android的app的设计与开发)
软件开发流程是一个逐步渐进的过程,将整个软件开发过程划分为顺序相接的四个阶段,每个阶段完成全部规定的任务后再进入下一个阶段,一个软件从开始到最后一共需要以下几个流程:
一.初始需求阶段
●用户提出需求:确定项目开发的目标和范围,与其可行性。
●分析需求规格:敲定主要功能模块,确定开发周期和报价。
●需求讨论规划:双方面谈,将软件需要实现的各个功能进行详细需求分析调整。
二.合同原型阶段
●签署开发合同:双方签订合同,客户支付预付款并提供人力、物力及相关协助。
●原型详细设计:将需求分析转化成未来系统符合用户期望的原型设计。
●开需求评审会:原型设计完成后,客户审核并确认具体设计,供应商开始编写实现。
三.个性化开发阶段
●软件开发设计:对整个软件系统进行设计,如系统框架设计、数据库设计等,为系统开发一个健壮的结构并调整设计使其与实现环境相匹配。
●程序开发编码:在开发构建阶段,由供应商程序员根据详细设计及计划,将所有应用程序功能开发并集成为产品。
●软件测试阶段:测试要验证对象间的交互作用,验证软件中所有组件的正确集成,检验所有的需求已被正确的实现,识别并确认缺陷在软件部署之前被提出并处理。
四.交付维护阶段
●产品软件部署:部署的目的是成功的生成版本并将软件分发给最终用户。
●正式验收交付:要确定软件、环境、用户是否可以开始系统的运作,交付阶段的重点是确保软件对最终用户是可用的。
●后期项目维护:软件产品发布后,根据需求变化或硬件环境的变化对应用程序进行修改。
以上就是软件开发流程的四个阶段,但在软件开发过程中并不是必须按照这个进行的,可以根据项目的大小周期适当调整,从中找到最贴近自己公司情况开发流程。
逻辑思维软件
人工智能,大数据与深度学习之间的关系和差异
说到人工智能(AI)的定义,映入脑海的关键词可能是“未来”,“科幻小说”,虽然这些因素看似离我们很遥远,但它却是我们日常生活的一部分。语音助手的普及、无人驾驶的成功,人工智能、机器学习、深度学习已经深入我们生活的各个场景。例如京东会根据你的浏览行为和用户的相似性,利用算法为你推荐你需要的产品;又比如美颜相机,会基于你面部特征的分析,通过算法精细你的美颜效果。还有众所周知的谷歌DeepMind,当AlphaGo打败了韩国职业围棋高手Lee Se-dol时,媒体描述这场人机对战的时候,提到了人工智能AI、机器学习、深度学习等术语。没错,这三项技术都为AlphaGo的胜利立下了汗马功劳,然而它们并不是一回事。
人工智能和机器学习的同时出现,机器学习和深度学习的交替使用……使大部分读者雾里看花,这些概念究竟有何区别,我们可以通过下面一个关系图来进行区分。
图一:人工智能、机器学习、深度学习的关系
人工智能包括了机器学习和深度学习,机器学习包括了深度学习。人工智能是机器学习的父类,机器学习则是深度学习的父类。
人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的与人类智能相似的方式作出反应的智能机器,它不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能实际应用:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。人工智能目前也分为:强人工智能(BOTTOM-UPAI)和弱人工智能(TOP-DOWNAI)。
机器学习(Machine Learning,ML)是人工智能的核心,属于人工智能的一个分支。机器学习是指从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法,所以机器学习的核心是数据、算法(模型)、算力(计算机运算能力)。
机器学习应用领域:数据挖掘、数据分类、计算机视觉、自然语言处理(NLP)、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用等。
深度学习(Deep Learning,DL):是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。
数据挖掘(Data Mining,DM),顾名思义是指利用机器学习技术从海量数据中“挖掘”隐藏信息,主要应用于图像、声音、文本。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。所以数据挖掘更偏向于应用。
图二:数据挖掘与机器学习的关系
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。数据挖掘是机器学习和数据库的交叉,主要利用机器学习提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
不管是人工智能、机器学习、深度学习还是数据挖掘,目前都在解决共同目标时发挥了自己的优势,并为社会生产和人类生活提供便利,帮助我们探索过去、展示现状、预测未来。
一篇文章搞懂人工智能,机器学习和深度学习之间的区别
为了搞清三者关系,我们来看一张图:
如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
从低潮到繁荣
自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。
但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。
下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。
人工智能人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。
我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。
机器学习
机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。
许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。
但是由于计算机视觉和图像检测技术的滞后,经常容易出错。
深度学习
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。
举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。
每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。
如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。
总结
人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。
本文作者 Michael Copeland 曾是 WIRED 编辑,现在是硅谷知名投资机构 Andreessen Horowitz 的合伙人。
究竟什么是机器学习 深度学习和人工智能
目前,业界有一种错误的较为普遍的意识,即“深度学习最终可能会淘汰掉其他所有机器学习算法”。这种意识的产生主要是因为,当下深度学习在计算机视觉、自然语言处理领域的应用远超过传统的机器学习方法,并且媒体对深度学习进行了大肆夸大的报道。
深度学习,作为目前最热的机器学习方法,但并不意味着是机器学习的终点。起码目前存在以下问题:
1. 深度学习模型需要大量的训练数据,才能展现出神奇的效果,但现实生活中往往会遇到小样本问题,此时深度学习方法无法入手,传统的机器学习方法就可以处理;
2. 有些领域,采用传统的简单的机器学习方法,可以很好地解决了,没必要非得用复杂的深度学习方法;
3. 深度学习的思想,来源于人脑的启发,但绝不是人脑的模拟,举个例子,给一个三四岁的小孩看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩也十有八九能做出那是一辆自行车的判断,也就是说,人类的学习过程往往不需要大规模的训练数据,而现在的深度学习方法显然不是对人脑的模拟。
深度学习大佬 Yoshua Bengio 在 Quora 上回答一个类似的问题时,有一段话讲得特别好,这里引用一下,以回答上述问题:
Science is NOT a battle, it is a collaboration. We all build on each others ideas. Science is an act of love, not war. Love for the beauty in the world that surrounds us and love to share and build something together. That makes science a highly satisfying activity, emotionally speaking!
这段话的大致意思是,科学不是战争而是合作,任何学科的发展从来都不是一条路走到黑,而是同行之间互相学习、互相借鉴、博采众长、相得益彰,站在巨人的肩膀上不断前行。机器学习的研究也是一样,你死我活那是邪教,开放包容才是正道。
结合机器学习2000年以来的发展,再来看Bengio的这段话,深有感触。进入21世纪,纵观机器学习发展历程,研究热点可以简单总结为2000-2006年的流形学习、2006年-2011年的稀疏学习、2012年至今的深度学习。未来哪种机器学习算法会成为热点呢?深度学习三大巨头之一吴恩达曾表示,“在继深度学习之后,迁移学习将引领下一波机器学习技术”。但最终机器学习的下一个热点是什么,谁又能说得准呢。
编辑于 2017-12-27
条评论
分享
收藏感谢收起
阿里云云栖社区
用户标识1
已认证的官方帐号
39 人赞同了该回答
人工智能并不是一个新的术语,它已经有几十年的历史了,大约从80年代初开始,计算机科学家们开始设计可以学习和模仿人类行为的算法。
在算法方面,最重要的算法是神经网络,由于过拟合而不是很成功(模型太强大,但数据不足)。尽管如此,在一些更具体的任务中,使用数据来适应功能的想法已经取得了显着的成功,并且这也构成了当今机器学习的基础。
在模仿方面,人工智能专注于图像识别,语音识别和自然语言处理。人工智能专家们花费了大量的时间来创建诸如边缘检测,颜色配置文件,N-gram,语法树等。不过,这些进步还不足以达到我们的需求。
传统的机器学习:
机器学习(ML)技术在预测中发挥了重要的作用,ML经历了多代的发展,形成了具有丰富的模型结构,例如:
1.线性回归。
2.逻辑回归。
3.决策树。
4.支持向量机。
5.贝叶斯模型。
6.正则化模型。
7.模型集成(ensemble)。
8.神经网络。
这些预测模型中的每一个都基于特定的算法结构,参数都是可调的。训练预测模型涉及以下步骤:
1. 选择一个模型结构(例如逻辑回归,随机森林等)。
2. 用训练数据(输入和输出)输入模型。
3. 学习算法将输出最优模型(即具有使训练错误最小化的特定参数的模型)。
每种模式都有自己的特点,在一些任务中表现不错,但在其他方面表现不佳。但总的来说,我们可以把它们分成低功耗(简单)模型和高功耗(复杂)模型。选择不同的模型是一个非常棘手的问题。
由于以下原因,使用低功率/简单模型是优于使用高功率/复杂模型:
深度学习和人工智能是什么关系?
其实深度学习、人工智能和机器学习一般都捆绑出现,通常大家也是痛不清楚这三者的关系,既然题主已经问了其中两个了,我这边就顺便把 3 个都说一说吧。
随着技术越来越发达,人工智能、机器学习、深度学习等名词越来越频繁地出现在我们视野中。但事实是,绝大多数人可能还不清楚人工智能、机器学习、深度学习是什么,三者之间有什么区别。今天我们就来看一下这个问题。
人工智能
人工智能(Artificial Intelligence),英文缩写为 AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
机器学习
机器学习是人工智能的核心,是使计算机拥有智能的根本途径。人通过学习变得越来越聪明,机器也能通过学习模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。这其中涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
机器学习能在学习的过程中通过经验和以往的数据,改善具体算法的性能。
深度学习
深度学习(Deep Learning)是机器学习领域中一个新的研究方向,是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉(CV)和自然语言处理(NLP)领域。相比于机器学习更强大,学习速度更快,带来的结果也更加准确可靠。
深度学习从统计学的角度来说,就是在预测数据的分布,从数据中学得一个模型然后再通过这个模型去预测新的数据。深度学习需要大量的模型和数据去训练,目前在语音和图像识别方面取得的效果很不错。
三者的关系与区别
机器学习是人工智能的实现方法,深度学习是机器学习的其中一种,深度学习比机器学习需要的数据和运算量更大,所以效果相对更好。人工智能包含了机器学习,机器学习包含了深度学习。
深度学习和人工智能之间是什么样的关系
1. 深度学习与AI。
本质上来讲,人工智能相比深度学习是更宽泛的概念。
人工智能现阶段分为弱人工智能和强人工智能,实际上当下科技能实现的所谓“人工智能”都是弱AI,奥创那种才是强AI(甚至是boss级的)。
而深度学习,是AI中的一种技术或思想,曾被MIT技术评论列为2013年十大突破性技术(Deep Learning居首)。
或者换句话说,深度学习这种技术(我更喜欢称其为一种思想,即end-to-end)说不定就是实现未来强AI的突破口。
2. 深度学习与ML。
DL与ML两者其实有着某种微妙的关系。
在DL还没有火起来的时候,它是以ML中的神经网略学习算法存在的,随着计算资源和big data的兴起,神经网络摇身一变成了如今的DL。
学界对DL一般有两种看法,一种是将其视作feature extractor,仅仅用起提取powerful feature;而另一种则希望将其发展成一个新的学习分支,也就是我上面说的end-to-end的“深度学习的思想”。
文章版权声明
1 原创文章作者:汇维网,如若转载,请注明出处: https://www.52hwl.com/109491.html
2 温馨提示:软件侵权请联系469472785#qq.com(三天内删除相关链接)资源失效请留言反馈
3 下载提示:如遇蓝奏云无法访问,请修改lanzous(把s修改成x)
4 免责声明:本站为个人博客,所有软件信息均来自网络 修改版软件,加群广告提示为修改者自留,非本站信息,注意鉴别