生成对抗网络,AI将图片转成漫画风格

哈喽,大家好。

最近大家都在玩 AI 绘画,我在 GitHub 上找了一个开源项目,给大家分享一下。

生成对抗网络,AI将图片转成漫画风格

今天分享的这个项目是用 GAN​ 生成对抗网络实现的,关于GAN的原理和实战我们之前分享过很多文章,想了解的朋友可以去翻历史文章。

源码和数据集文末获取,下面分享如何训练、运行项目。

1. 准备环境

安装 tensorflow-gpu 1.15.0​,GPU显卡使用2080Ti​,cuda版本10.0。

git下载项目AnimeGANv2源码。

搭建好环境后,还需要准备数据集和vgg19。

生成对抗网络,AI将图片转成漫画风格

下载dataset.zip​压缩文件,里面包含 6k 张真实图片和2k张漫画图片,用于GAN的训练。

生成对抗网络,AI将图片转成漫画风格

vgg19是用来计算损失的,下面会有详细介绍。

2. 网络模型

生成对抗网络需要定义两个模型,一个是生成器,一个是判别器。

生成器网络定义如下:

with tf.variable_scope('A'):
inputs = Conv2DNormLReLU(inputs, 32, 7)
inputs = Conv2DNormLReLU(inputs, 64, strides=2)
inputs = Conv2DNormLReLU(inputs, 64)

with tf.variable_scope('B'):
inputs = Conv2DNormLReLU(inputs, 128, strides=2)
inputs = Conv2DNormLReLU(inputs, 128)

with tf.variable_scope('C'):
inputs = Conv2DNormLReLU(inputs, 128)
inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r1')
inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r2')
inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r3')
inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r4')
inputs = Conv2DNormLReLU(inputs, 128)

with tf.variable_scope('D'):
inputs = Unsample(inputs, 128)
inputs = Conv2DNormLReLU(inputs, 128)

with tf.variable_scope('E'):
inputs = Unsample(inputs,64)
inputs = Conv2DNormLReLU(inputs, 64)
inputs = Conv2DNormLReLU(inputs, 32, 7)
with tf.variable_scope('out_layer'):
out = Conv2D(inputs, filters =3, kernel_size=1, strides=1)
self.fake = tf.tanh(out)

生成器中主要的模块是反向残差块

生成对抗网络,AI将图片转成漫画风格

残差结构(a)和反向残差块(b)

判别器网络结构如下:

def D_net(x_init,ch, n_dis,sn, scope, reuse):
channel = ch // 2
with tf.variable_scope(scope, reuse=reuse):
x = conv(x_init, channel, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='conv_0')
x = lrelu(x, 0.2)

for i in range(1, n_dis):
x = conv(x, channel * 2, kernel=3, stride=2, pad=1, use_bias=False, sn=sn, scope='conv_s2_' + str(i))
x = lrelu(x, 0.2)

x = conv(x, channel * 4, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='conv_s1_' + str(i))
x = layer_norm(x, scope='1_norm_' + str(i))
x = lrelu(x, 0.2)

channel = channel * 2

x = conv(x, channel * 2, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='last_conv')
x = layer_norm(x, scope='2_ins_norm')
x = lrelu(x, 0.2)

x = conv(x, channels=1, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='D_logit')

return x

3. 损失

计算损失之前先用VGG19​网路将图片向量化。这个过程有点像NLP​中的Embedding操作。

Eembedding​是讲词转化成向量,VGG19是讲图片转化成向量。

生成对抗网络,AI将图片转成漫画风格

VGG19定义

计算损失部分逻辑如下:

def con_sty_loss(vgg, real, anime, fake):

# 真实图片向量化
vgg.build(real)
real_feature_map = vgg.conv4_4_no_activation

# 生成图片向量化
vgg.build(fake)
fake_feature_map = vgg.conv4_4_no_activation

# 漫画风格向量化
vgg.build(anime[:fake_feature_map.shape[0]])
anime_feature_map = vgg.conv4_4_no_activation

# 真实图片与生成图片的损失
c_loss = L1_loss(real_feature_map, fake_feature_map)
# 漫画风格与生成图片的损失
s_loss = style_loss(anime_feature_map, fake_feature_map)

return c_loss, s_loss

这里使用vgg19​分别计算真实图片(参数real)与生成的图片(参数fake)​的损失,生成的图片(参数fake)与漫画风格(参数anime)的损失。

c_loss, s_loss = con_sty_loss(self.vgg, self.real, self.anime_gray, self.generated)
t_loss = self.con_weight * c_loss + self.sty_weight * s_loss + color_loss(self.real,self.generated) * self.color_weight + tv_loss

最终给这两个损失不同的权重,这样是的生成器生成的图片,既保留了真实图片的样子,又向漫画风格进行迁移

4. 训练

在项目目录下执行以下命令开始训练

python train.py --dataset Hayao --epoch 101 --init_epoch 10

运行成功后,可以看到一下数据。

生成对抗网络,AI将图片转成漫画风格

同时,也可以看到损失在不断下降。

源码和数据集都已经打包好了,需要的朋友评论区留言即可。

如果大家觉得本文对你有用就点个 在看 鼓励一下吧,后续我会持续分享优秀的 Python+AI 项目。

文章版权声明

 1 原创文章作者:2020.12.3.0:19、 ҉,如若转载,请注明出处: https://www.52hwl.com/48461.html

 2 温馨提示:软件侵权请联系469472785#qq.com(三天内删除相关链接)资源失效请留言反馈

 3 下载提示:如遇蓝奏云无法访问,请修改lanzous(把s修改成x)

 免责声明:本站为个人博客,所有软件信息均来自网络 修改版软件,加群广告提示为修改者自留,非本站信息,注意鉴别

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023年7月16日
下一篇 2023年7月16日