杨辉三角的历史,杨辉三角按照杨辉于1261年所编写的《详解九章算法》一书,里面有一张图片,介绍此种算法来自于另外一个数学家贾宪所编写的《释锁算书》一书,但这本书早已失传无从考证。但可以肯定的是这一图形的发现我国不迟于1200年左右。在欧洲,这图形称为”巴斯加(Pascal)三角”。因为一般都认为这是巴斯加在1654年发明的。其实在巴斯加之前已经有许多人普及过,最早是德国人阿匹纳斯(Pertrus APianus),他曾经把这个图形刻在1527年著的一本算术书封面上。但无论如何,杨辉三角的发现,在我国比在欧洲至少要早300年光景。,此外杨辉三角原来的名字也不是三角,而是叫做开方作法本源,后来也有人称为乘法求廉图。因为这些名称实在太古奥了些,所以后来简称为“三角”。,在小傅哥学习杨辉三角的过程中,找到了一本大数学家华罗庚的PDF《从杨辉三角谈起 – 华罗庚》。—— 这些数学真的非常重要,每每映射到程序中都是一段把for循环优化成算法的体现,提高执行效率。,在开始分享杨辉三角的特性和代码实现前,我们先来了解下杨辉三角的结构构造。,,杨辉三角的结构和规律非常简单,除去每次两边的1,中间的数字都是上面两个数字的和。如图示意的三角区域。但也就是如此简单的结构,却有着诸多的数学逻辑体现。包括我们计算的二项式、N选X的种数还有斐波那契数列等,都可以在杨辉三角中体现出来。接下来我们就来看看这些特性。,为了方便学习杨辉三角的数学逻辑特性,我们把它按左对齐方式进行排列。,接下来我们就以这组杨辉三角数列,来展示它的数学逻辑特性。关于杨辉三角的Java代码放已到下文中,读者可以查阅。,大家在上学阶段一定学习过二项式展开,例如:(x+y)^2 = x^2 + 2xy + y^2 其实这个展开的数学逻辑在杨辉三角中可以非常好的展示出来。,,组合数是数学中定义的一种数学概念,用于计算有多少种选择可以从一组物品中选择出若干的物品。比如你早上有5种水果可以吃,但你吃不了那么多,让你5种水果中选2个,看看有多少种选择。通过使用公式 c(n,k) = n!/k!(n-k)! 可以计算出,5选2有10种选择。,那么这样一个计算也是可以体现在杨辉三角中的。,,斐波那契数列出现在印度数学中,与梵文韵律有关。在梵语诗歌传统中,人们对列举所有持续时间为 2 单位的长 (L) 音节与 1 单位持续时间的短 (S) 音节并列的模式很感兴趣。关于更多斐波那契更多知识可以阅读小傅哥的:《程序员数学:斐波那契》—— 为什么不能用斐波那契散列,做数据库路由算法?,斐波那契数列可以由递归关系定义:F0 = 0,F1 = 1,Fn = Fn-1 + Fn-2,F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 0 1 1 2 3 5 8 13 21 34,而这样一个有规律的斐波那契数列在杨辉三角中也是有所体现的。,,在杨辉三角中还有一个非常有意思的特性,就是有2的次方和11次方数。,2次方,,- 杨辉三角每一行的数字加和,正好的2的0次方、1次方..n次方,11次方,,,接下来我们实现下杨辉三角;,单元测试,
文章版权声明
1 原创文章作者:cmcc,如若转载,请注明出处: https://www.52hwl.com/18220.html
2 温馨提示:软件侵权请联系469472785#qq.com(三天内删除相关链接)资源失效请留言反馈
3 下载提示:如遇蓝奏云无法访问,请修改lanzous(把s修改成x)
4 免责声明:本站为个人博客,所有软件信息均来自网络 修改版软件,加群广告提示为修改者自留,非本站信息,注意鉴别